A Virtual Pipeline Simulation Testbed

1 Problem description: motivation for simulation testbed

Natural gas systems are becoming more and more complex as the use of this energy source increases. Mathematical modeling is one of the most important tools to be used to aid in design and operation studies. Software implementation is therefore of great importance. This motivates us to develop a virtual pipeline simulation testbed. In addition, to further improve the performance, parallelism is added. 

2 Building a pipeline simulation system

A typical pipeline system consists of pipelines, metering stations, valves, and compressor stations that may be set up by a set of pipelines, compressors, engines, turbines, and valves. It operates in an unsteady nature. Figure 1 shows an example pipeline network.
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Figure 1 A simple gas pipeline network

The goal of simulation is to model the pressure and flow rate distribution in the real system. It can be achieved by solving a set of particular partial differential equations (PDE), which can mathematically describe certain type of problem.

In the following sections, we will first try to give the PDE description of individual equipment characteristics. It includes:

· Finite difference equations

· Heuristics to maintain mass flow and pressure

· How each piece of equipment is simulated by one or more threads

Finally, we will discuss how we can use GUI to construct the simulation model.

3 Modeling the equipment 

For each component in a gas pipeline network, a particular set of partial differential equations will be derived. Currently, the partial differential equations for isothermal pipeline simulation have been derived. Therefore, the following sections will focus on PDE description of pipe.

3.1 PDEs for pipe

Mathematically, the mechanical interaction of the gas inside a pipe can be modeled by following partial differential equations [1]:
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	Equation 1
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	Equation 2


Where 
[image: image6.wmf]r

is gas density


u is velocity


p is pressure


g is gravity


D is diameter


t is time


x is length
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 is the angle between pipe and ground

Since there is no analytical solution for the above equations, we need to apply some numerical scheme to obtain approximate solutions.

3.2 Finite difference equations for pipe 

Using fully implicit finite difference method, Mohammad derived the following finite difference equations for equation 1 and 2:
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	Equation 3
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	Equation 4


Where Xm, p, A, r, t, z0, dx, dt, g, D, pct1, pcp1, Xmu, 
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,
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 are coefficient obtained from Mohammad’s paper [1]. n represents time step and i represents node index.

3.3 Solution to finite difference equations for pipe

We use finite difference method to discretize a pipe into nodes; each node is associated with two weak form equations of the above form. So we have a set of equations to describe the pipe.
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	Equation 5


Since some equations are nonlinear equations, we use Newton-Raphson method [2] to solve the equation system. Reader can refer appendix for details about how to setup Jacobian matrix and parallel decomposite it and back substitution.
3.4 Partitioning equipment for enhancing parallelism

For huge pipe, we partition the pipe to solve the problem parallel.

3.5 Program structure for sequential and parallel solution

3.5.1 Sequential Algorithm

1. User function supplies function values at nodes in terms of vector and Jacob matrix in terms of matrix

2. Check function convergence.

3. Solve linear equations using Gaussian elimination.

4. Check root convergence 

5. Update solution

6. While not converged, repeat step 1-5

3.5.2 Parallel implementation

Now, we want to improve the performance by parallelizing the above algorithm. 

Parallel Algorithm

1. For each pipe in the network

     Do 


Wait for the signal from its partition

      
Upon signal, check root convergence for itself


If converge, 

Then send message to neighbor (valve), and wait for signal from valve

         Upon signal from valve, check if the whole network is converged






Then go to next time step






Else   continue next iteration of the

          same time step by signal the 

          partitions 



Else continue next iteration of same time step by signal the partitions

       2.    For each partition inside a pipe


     Do



User function supplies function values and Jacob matrix at a node



Check function convergence



Decomposes the Jacob matrix and back substitute for the solutions



Wait for the signal from the pipe

3.   For each valve, 

     Do


Wait for the value from the pipes connected to it


Sum the mass flow rate

Check if it satisfies the mass conservation law




Then signal neighbor pipes with heuristic value zero




Else  signal neighbor pipes with heuristic value of ½ 

3.6 Example 

In this section, we will create a simple pipeline network, which only contains one pipe.

First, we start a new application by typing java-1.3 pipe/Application at the prompt. Then click the Edit/Create/Define Model. After input the size, select “pipeline” in the control panel on the left and generates a pipe on the blank display panel on the right. It should be the similar as the one shown in Figure 2.
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Figure 2 A simple one pipe networks

So far a pipe has already been added to the DataSet. Next, we initialize the model by click Edit/Init Analysis. It will invoke the init() function of Pipeline instance.

Now, we will explain what the init() does. It will first initialize the pipe properties of the pipeline instance by calling following private functions:

        initProperty();

        initMats();

The above two functions will set the value of   length, teta, pct, pcp, rot, number of nodes, sg, r_, temperature, diameter, spacing between nodes, xlhv, xmu, wt, cpm at 50 and 300˚F, and DTT(step for forward differential). All these properties can be easily looked up from Mohammad’s paper and values for these properties can be found inside the implementation of the above two functions.

Then we call 

        initNodes(numOfNodes);

        applyBC();

        initMem();

        genPartitions();

Which discretizes the pipe, setup the boundary conditions, allocates the memory, and generates the partitions in turn. The boundary conditions are 40000 Pascal at the begin node and 50000 Pascal at the end node. 

Next, we create the Storage instance which implements the index storage scheme, pipeSolver instance which takes care of the parallel decomposition of the Jacobian matrix and the back substitution, and attach the storage to the IsothermalBehavior instance. The code is listed below:

        int rownum = numOfNodes * (dof.numOfDof - 1);

        double ad[] = new double[rownum];

        Storage storage = new Storage(rownum, activeDofs);

        psolver = new pipeSolver(numOfNodes * activeDofs, this, storage, ad,

                                  activeDofs, localBacksub);

        ((IsothermalBehavior)behavior).setStorage(storage) ;

The rest part of the init() function will calculate the initial pressure and mass flow distribution based on the equation 4(appendix).

After initialization, we can now proceed to solve the problem by clicking the Edit/Run Analysis. It will invoke the pipeline instance to run which will in turn invoke its partitions to run.

Next we will explain how pipeline instance perform the computation in its run() function.

    public void run() {

        for(numIter = 2; currIter < numIter;) {

            doWork();

            chkSubtasksConverge.Signal();

        }

        //Clean up

        psolver.exit();

        chkSubtasksConverge.exit();

        localBacksub.exit();

        subTasks.exit();

    }

    public void doWork() {

        // <await all partitions converge>

        chkSubtasksConverge.Wait();

        // Send to neighbor valve and let it check mass conservation

        // send();

        // Receive from the valve to get heuristic

        // receive();

        // <await global converge checking finished>

        chkGlobalConverge.gate(gateId);

        // if global converged continue the next iteration

        // else reset local and global converge state to false

        if(!chkGlobalConverge.converge) {

            chkGlobalConverge.gate(gateId);

            chkSubtasksConverge.converge = chkGlobalConverge.converge = true;

        } else {

            chkGlobalConverge.gate(gateId); // This can be saved

            currIter++;

        }

    }

The above functions are the implementation of Pipeline run() and doWork() functions. Their jobs are to wait for the converge signal from its partitions, and then send the boundary value to neighbor valves and let them check the global convergence. Based on the data received from valves, the pipeline instance will decide whether or not start the next time step or continue the next iteration for the current time step. It will send signal to the waiting partitions and wake them up. Let these workers continue their job. In the above code, the send() and receive() are commented out due to the fact that there is no valve involved in the one pipe networks.

Actually, the computation of Jacobian matrix is done in the IsothermalBehavior associated with the partitions of the pipeline instance. In IsothermalBehavior, the userFunc (int i, int j) function will fill the entries from row i to row j in Jacobian matrix. The first thing this function will do is to evaluate the function value, say –fk, index k ranges from i to j. –fk  is calculated by evaluateRHS(). The implementation of evaluateRHS () is straightforward. It first calculates the coefficients of equation 5 and 6(Appendix) and gets the function values by substituting the pressure values and mass flow rate values, which are computed from the previous iteration or time step, into the unknowns in the equations. For the very first iteration, the initial pressure values and mass flow rate values, which can be calculated from equation 4, are considered the previous iteration values. Once we compute the function values, we can proceed to evaluate the Jacobian matrix. Indeed, each entry in the Jacobian matrix is calculated by forward differentiating the function value. For example, if we want to evaluate df4/dp2, we first evaluate f4 using pressure value at node 2(zero-based), together with other unknown values. Next, we evaluate f4’ using a new pressure value that equals to p2+∆p. ∆p is set to 9.9999999999999995E-007D. The final value of df4/dp2 will be (f4 - f4’)/ ∆p. 
3.7 Work left to be done

There is still some work left to be done for the pipe, such as verification of simple isothermal pipe/valve network and non-isothermal pipe/valve network.

4 GUI to construct model

4.1 Icons and semantics 

4.1.1 Selection Tool

The selection tool [image: image17.png]


allows the user to select an object. When the selection tool is active a single left click selects the object, a double left click pops up a dialog box to edit the properties of the object and a right click brings up a menu showing the object’s properties.

4.1.2 Delete Tool

The delete tool [image: image18.png]


allows the user to delete the selected object. 

4.1.3 Drag Tool

The drag tool [image: image19.png]


allows the user to drag the selected object. 

4.1.4 Pipeline Tool

The pipeline tool 
[image: image20.wmf]allows the user to create a pipeline.

4.1.5 Engine Tool

The Engine tool 
[image: image21.wmf]allows the user to create an engine. It usually locates in a compressor station.

4.1.6 Compressor Tool

The Compressor tool 
[image: image22.wmf]allows the user to create a Compressor. It usually locates in a compressor station.

4.1.7 Valve Tool

The valve tool 
[image: image23.wmf]allows the user to create a valve. It may connect different pipelines.

4.1.8 Metering Station Tool

The metering station tool 
[image: image24.wmf]allows the user to create a metering station.

4.1.9 Turbine Tool

The turbine tool 
[image: image25.wmf]allows the user to create a turbine. It usually locates in a compressor station.

4.1.10 Compressor Station Tool

The compressor station tool 
[image: image26.wmf]allows the user to create a compressor station. A compressor station can be set up by a small network of pipelines, engines, valves, turbines, and compressors.

4.1.11 Model view

Currently zoom in or out and pan have not been added. However, basic coordinate transformation functionality has already been implemented. So it will not be difficult to add the above functionalities

4.1.12 Units

No units are built into the program. By default, the current implementation uses seconds for time and the material properties use the metric system, length units are meters. In the future the user will interactively specify the values.

4.2 Representation of instances of objects   

The software representations of above objects, if applicable, are following classes, such as Pipeline, Engine, Compressor, Valve, MeteringStation, Turbine, and CompositeEquipment. These objects adapt to composite pattern.

These objects are responsible for the geometry modeling. Next you will see how do we represent the underlying physics in pipe objects.

4.3 Representation of finite difference equations of pipe objects

In GUI, when users click the menu item “Edit/Init Analysis”, a specific behavior object is created and associated with each pipe object.

To facilitate new equipment development, our approach emphasizes that the main purpose of equipment is geometric representation and synchronization. The underlying equipment physics are independent of the equipment. The underlying physics, called the equipment behavior, is separated from the equipment geometric properties and the parallel approach we use. For example, a fluid flow analysis, a plane strain deformation analysis, or a heat transfer analysis can all use the same pipe equipment by only changing the behavior, not the equipment. The equipment class defines functions that define the external interface. Behavior classes handle the implementation of the equipment behavior, whose main purpose is to calculate the Jacob matrix by partial differential equations determined by physics. 

The equipment fully implemented is valve and pipe. Others are partially implemented, which means geometric representation is done but parallel code is not implemented yet. Behavior implemented so far is isothermal pipe behavior.

4.4 Example

This section will take transient analysis as an example to illustrate how we simulate a transient problem.

4.4.1 Create Boundary

Start the simulation program by type “Java-1.3 Application”.  Select Edit/Create/Define Boundary; then type the numbers as show below (Figure 3):
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Figure 3 Boundary Dialog

The initial view will be shown in Figure 4.
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Figure 4 Blank view

4.4.2 Add a component

Add a component by select a specific component in the control panel. 

4.4.3 Add a Pipe or other regular components

To add a pipe, we need to do following things. First, click the pipe button in the control panel, and then select the type of the pipe by choosing from the popup menu. Second, move mouse to the display panel on the right. Third, pick a start point for the pipe. Finally, drag the mouse to the end point of the pipe. You will see a pipe created. For other regular components, such as metering station, turbine, engine, valve, and compressor, the procedure is similar.

4.4.4 Compressor Station

A compressor station is actually a composite component, because it may consist of some other components, such as pipes, turbines, engines, valves, and compressors. To set up a compressor station, first double click the compressor station created on the display panel. Then a dialog will be shown as in Figure 5.
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Figure 5 Compressor station edit dialog

Then following the similar steps described in previous sections, you can set up the compressor station on the display panel.

4.4.5 Define Material Properties

This part is currently hard coded in the init() of each component. Once a clear specification is available, it can be add to the properties dialog of each component. In current version, properties dialog only has name and coordinate information.

4.4.6 Define Pressure and Temperature Boundary Conditions

This part is currently hard coded in the init() code of each component. For late version, it may be added to the properties dialog of each component. 

4.4.7 Mesh Control

At this point, we still have no idea if such functionality is necessary or not. It is reserved for future complex network analysis.

4.4.8 Initialize an analysis

Select Edit/Init Analysis to initialize the analysis. During initialization, we need specify what kind of behavior, which means partial differential equations, a component should have, convergence tolerance, time interval, start time, end time, updating factor between two iterations among components, and name of the analysis for save operation. In addition, each component will be associated with certain behavior and material properties.  The menu is shown in Figure 4.
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Figure 6 Menu

Currently, initialization is hard coded. The behavior for pipe is the PDE for isothermal gas solving for two unknowns, pressure and flow rate, at one node. The time interval is 50. The convergence tolerance is set to 0.001, and updating factor is 0.5. Material properties can be obtained from Mohammed.

4.4.9 Run Analysis

Select Edit/Run Analysis to do the finite difference analysis. The progress will be shown on the console.

4.4.10 View Results

This part is not implemented yet. Right now, the results will only show on the console.

4.5 Work left to be done

There is still a lot of GUI development need to be done. However, no further specification is available at this point. Therefore, it will leave for future.

5 Performance Analysis

5.1 Introduction 

In many cases, running a program on a multiple processors machine will improve the performance. There are several ways to measure performance, and several rules to respect. In a time sharing system such as Unix, the user load in the system will affect the values of the performance. So measurement should be done with an exclusive access to the parallel computer. We calculate an average of execution and not measure all the performances from one test.

5.2 Performance measurement 

5.2.1 Speedup

A problem is said to have a speedup of S if the solution for the problem can be obtained with multiple processors in 1/S of the original time required by a single processor.

For a given problem and a given parallel computer with P processors, the speedup is the ratio between the time Ts required to solve the problem by the best known sequential program on one processor and the time Tp required to solve the same problem by a parallel algorithm on P processors. 

S=Ts/Tp
The speedup can also be the ratio between the time used to solve the parallel algorithm on one processor (T1) and the time used to solve the same parallel algorithm on P processors (Tp). 

S=T1/Tp
Efficiency
It is defined as ratio between the speedup S and number of processors P.

E=S/P
It measures the effectiveness in utilizing all P processors by a parallel algorithm. Higher value of E means better utilization of the parallel computer by the parallel algorithm.

5.3 Experiment

The first experiment we did was to solve an isothermal pipe problem with 54000 nodes. The experiment machine is a SUN Enterprise 4000 with 9 168Mhz UltraSparc processors and 512 Mbytes of RAM running Solaris 5.51. We tried to run the program on 1, 2, 3, 4, and even more processors. The result is shown in the figure 7.
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Figure 7 Performance experiment on machine Helios

From the plot, we can see that the running time decreases as the number of threads increases, but when the number of threads is more than 9, the running time increases a little bit instead of decreasing steadily. We think the reasons are the following: first, machine Helios has 9 processors and if we have less than or equal to 9 worker threads to do the computing, then each thread can be assigned a processor. Therefore, the running time decreases as the number of threads increases. Second, if the number of threads is more than 9, then we may have some extra overhead on thread switching, so the running time increases a little bit.

We also observed that the curve is not linear. We think 54000 nodes is not so heavy work load that as the number of threads increases, it can not keep all the processors busy.

The speedup factor is 3.92 and efficiency factor is 43.5%.

The second experiment was done on the machine Sunflower, which has 4 processors. We solved for 2 cases: 200000 nodes and 54000 nodes. The result is shown below:

[image: image32.emf]Sunflower

0

20000

40000

60000

80000

100000

120000

1 2 3 4

Number of Processors

Running Time (millisencond)

200000 Nodes

54000 nodes


Figure 8  Performance experiment on machine Sunflower

We can see that the result is similar with the first experiment. The speedup factors are 3 for 54,000 nodes and 3.15 for 200,000 nodes. The efficiency factors are 75% for 54,000 nodes and 78.75% for 200,000 nodes. It is a little bit more computing work need to be done per processor for the case with 200,000 nodes; therefore, the efficiency factor is bigger.  

6 Future Work

There is still some future work need to be done. For example, as mentioned previously, GUI development, and simulation of other equipments.

Besides, serialization also need to be done to facilitate the store and retrieve operation upon existing model.

Finally, we need to modulize the current work.

7 Appendix

In this section, we will explain how the parallel solver for a single pipe works.

First of all, the method we used to solve the equations within a pipe is parallel direct method. It can be divided into two steps: decomposition and back substitution. Decomposition is the most expensive part. To parallelize it efficiently, we first carefully study the structure of the matrix.

First, for good locality, we arrange the unknown vector in the following format.
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Then the contribution made to the Jacob matrix by each node should look like Figure 9. Each is a sub matrix of the whole Jacob matrix.
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Figure 9 contribution made to the Jacob matrix by each node

Next, we will introduce how we calculate initial value, Jacob matrix, and right hand side vector.

Calculate Initial value

The initial guess of the pressure distribution can be also obtained from Mohammad’s paper. The equation is:
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	Equation 6


For the detail about the definition of the above coefficients, please refer to Mohammad’s paper.

Now, by equation 6, we can calculate the initial pressure at each node and initial mass flow rate for the pipe.

Calculate Jacob matrix and right hand side vector

As explained in the previous section, we discretized a pipe into nodes and each node can be modeled by the weak form of the analytical solution. 

By substituting the initial value into the equation 3 and 4, we calculate the right hand side vector. In addition, with these two equations, we can use forward difference method to calculate the (fi/(xj, which is the element of Jacob matrix. 
Parallel algorithm 

From Figure 9, we see that good locality happened within each sub matrix. Such good locality will make the whole Jacob matrix a very special structure. Take a four-node pipeline as an example. 
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The whole Jacob matrix is shown in 10
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Figure 10  A sample Jacob matrix for a four node pipeline with known pressure boundary conditions at the ends

By applying the boundary conditions to the pipe, for example, pressures are known at each end of the pipe, Figure 10 will look like Figure 11
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Figure 11 Finally Jacob matrix for the example pipeline

Note that only a few nonzero elements below the diagonal line in the matrix. They have a character, which is the nonzero element are local the sub matrix. Therefore, if we eliminate them from the sub matrix, there is no extra nonzero terms are introduced in the Jacob matrix. In this way, the matrix will be upper triangular matrix intermediately. For the above example, these elements are (f2/(m1, (f4/(m2, (f6/(m3. Therefore, the parallel algorithm can be easily developed. Each node can be decomposed independently. In other word, the gratuity can be refined as small as one node pre thread. But there is one exception, which is the boundary condition whose value is 1 at row 6 and column 1. But since there is at most one such element per pipe, so it does not affect the whole algorithm.

So far, the decomposition has been done.

For back substitution, we can only do it sequentially. But the cost is really small.
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